
LECTURE-17

Linkers and Loaders

Translation Hierarchy

Compiler:
Translates high-level language program into
assembly language.

 Assembler
Converts assembly language programs into
object files.

 Object files contain a combination of machine
instructions, data, and information needed to place
instructions properly in memory.

Flow of Execution

Translator

Linker

Loader

Program
execution

.Obj

.exe

Process for producing an
executable file

Linker
Tool that merges the object files produced by
separate compilation or assembly and creates an
executable file.

• Three tasks:-

 Searches the program to find library routines used by
program, e.g. printf(),sqrt(),strcat() and various other.

 Determines the memory locations that code from each
module will occupy and relocates its instructions by
adjusting absolute references.

Relocation, which modifies the object program so that it can be loaded at an address
different from the location originally specified.

 It combines two or more separate object programs and supplies the information needed

to allow references between them .

Linking Concepts

• Computer programs typically comprise several parts or modules; all
these parts/modules need not be contained within a single object
file, and in such case refer to each other by means of symbols.
Typically, an object file can contain three kinds of symbols:

 Publicly defined symbols, which allow it to be called by other
modules , also called as public definition .

 Externally defined symbols(undefined symbols), which calls the
other modules where these symbols are defined, also called as
external reference.

 Local symbols, used internally within the object file to facilitate
relocation.

Static Linking

• Static linking occurs when a calling program is linked to a called program in a single
executable module. When the program is loaded, the operating system places into
memory a single file that contains the executable code and data.

• The result of statically linking programs is an .EXE file or dynamic link library (DLL)
subprogram that contains the executable code for multiple programs. This file
includes both the calling program and the called program.

• The advantage of static linking is that you can create self-contained, independent
programs. In other words, the executable program consists of one part (the .EXE
file) that you need to keep track of.

• Disadvantages:

.You cannot change the behavior of executable files without relinking them.

• External called programs cannot be shared, requiring that duplicate copies of
programs be loaded in memory if more than one calling program needs to access
them.

Dynamic linking

• Many operating system environments allow
dynamic linking, that is the postponing of the
resolving of some undefined symbols until a
program is run.

• That means that the executable code still contains
undefined symbols, plus a list of objects or libraries
that will provide definitions for these. Loading the
program will load these objects/libraries as well,
and perform a final linking.

http://en.wikipedia.org/wiki/Operating_system

Advantages and Disadvantages

• Advantages:

• Often-used libraries (for example the standard system libraries) need to be
stored in only one location, not duplicated in every single binary.

• If an error in a library function is corrected by replacing the library, all
programs using it dynamically will benefit from the correction after
restarting them. Programs that included this function by static linking
would have to be re-linked first.

• Disadvantages:

• Known on the Windows platform as "DLL Hell", an incompatible updated
DLL will break executables that depended on the behavior of the previous
DLL.

• A program, together with the libraries it uses, might be certified (e.g. as to
correctness, documentation requirements, or performance) as a package,
but not if components can be replaced.

http://en.wikipedia.org/wiki/DLL_Hell

Loader
It is a SYSTEM PROGRAM that brings an executable file
residing on disk into memory and starts it running.
• Steps:-

– Read executable file’s header to determine the size of
text and data segments.

– Create a new address space for the program.

– Copies instructions and data into address space.

– Copies arguments passed to the program on the stack.

– Initializes the machine registers including the stack pointer.

– Jumps to a startup routine that copies the program’s
arguments from the stack to registers and calls the
program’s main routine.

Types of Loaders

Compile/Assemble and Go loader

 Absolute Loader

 Relocating Loader

Direct Linking loader

Assemble-and-go Loader

• Compilation, assembly, and link steps are not
separated from program execution all in single
pass.

• The intermediate forms of the program are
generally kept in RAM, and not saved to the file
system.

• Compile and go systems differ from interpreters,
which either directly execute source code or
execute an intermediate representation.

Advantages

• The user need not be concerned with the
separate steps of compilation, assembling,
linking, loading, and executing.

• Execution speed is generally much superior to
interpreted systems.

• They are simple and easier to implement.

Disadvantages

• There is wastage in memory space due to the presence of
the assembler.

• The code must be reprocessed every time it is run.

• Systems with multiple modules, possibly in different
languages, cannot be handled naturally within this
framework.

• Compile-and-go systems were popular in academic
environments, where student programs were small,
compiled many times, usually executed quickly and, once
debugged, seldom needed to be re-executed.

Absolute Loader

Absolute Program

• Advantage:

• Simple and efficient

• No linking or relocation

• Disadvantage:

• Difficult to use subroutine libraries.

• The need of programmer to state the actual
address.

Algorithm for Absolute Loader

1. begin
2. read Header record
3. verify program name and length
4. read first Text record
5. while record type <> ’E’ do
6. begin
7. {if object code is in character form, convert into
8. internal representation}
9. move object code to specified location in memory
10. read next object program record
11. end
12. jump to address specified in End record
13. end

Bootstrap Loader

• Special Type of Absolute Loader.

• When a computer is first tuned on or restarted
bootstrap loader is executed.

• This bootstrap loads the first program to be run
by computer that is the OS.

• It loads the first address 0x80.

Relocation

• Execution of the object program using any
part of the available and sufficient memory.

• The object program is loaded into memory
wherever there is room for it.

• The actual starting address of the object
program is not known until load time.

Relocating Loader

• Efficient sharing of the machine with larger
memory and when several independent
programs are to be run together.

• Support the use of subroutine libraries
efficiently.

Direct Linking Loader

• This type of loader is a relocating loader.
• The loader cannot have the direct access to the source

code.
• To place the object code 2 types of addresses can be

used:-

1. ABSOLUTE : In this the absolute path of object code is
known and the code is directly loaded in memory.

2. RELATIVE :In this the relative path is known and this
relative path is given by assembler.

Work Of Assembler in Direct Linking
Loader

The assembler should give the following
information to the loader:

 The length of the object code segment.

 A list of external symbols (could be used by diff.

segment).

 List of External symbols(The segment itself is
using)

